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The simulation of diffusion of a continuum field by the random walk displacement of a set 
of particles is investigated in detail. Computational particles are used to transport elements of 
the gradients of the diffusive concentration. One-dimensional and quasi-one-dimensional cases 
are treated for a generalized diffusion variable. Different types of boundary conditions of the 
diffusion equation are considered, as well as the extensions to a system of coupled diffusion 
equations, the reaction-diffusion equations and the convection-diffusion set of equations. It is 
shown that by using concentration gradients in the random walk process. statistical errors are 
reduced and each realization of the numerical solution is a representation of the exact 
solution. Moreover, transport of higher-order derivatives can be utilized to improve the 
smoothness. The algorithm is grid-free, and the computational elements move to follow the 
gradients, thus it is self-adaptive and uniform resolution is attained for all times. The method 
is particularly suitable for the simulation of diffusion in systems which involve more than one 
transport mechanism, when the diffusivity is small and when Lagrangian elements are used to 
model the other mechanisms. 0 1985 Academic Press. Inc. 

I. INTRODUCTION 

Diffusion is a macroscopically observed phenomenon, attributed to the Brownian 
motion of microscopic particles. It accomplishes a net transport of a macroscopic 
property through a material continuum without a coherent displacement of that 
continuum. The rate of diffusive transport is proportional to the local gradient of 
the concentration of the diffusion field. The term was originally applied to the dif- 
fusion of molecular species, but it is often used for the diffusion of heat, elec- 
tromagnetic fields, or vorticity. 

From a molecular-kinetic viewpoint, diffusion is due to the random motion of 
molecules and the short-range interactions of inter-molecular force fields during 
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collision [47]. In the diffusion of species, the only effect of collisions is to redirect 
the trajectories of molecules while altering their speed. In the case of heat, collision 
also changes the energy levels associated with motions around the molecular center 
of mass. Thus it may not even be necessary that the molecules ever wander far from 
their initial positions. For the diffusion of vorticity, one observes a coherent effect in 
the motion of the fluid - the molecules are given an average motion which can be 
identified in terms of the rotation of macroscopic particles. This rotation is com- 
municated from one particle to its neighbor by viscous forces, and appears to dif- 
fuse throughout the fluid [78]. 

1.1. Modeling of Diffusion 

For the simplest case, in which the diffusivity D - the factor of proportionality 
between flux and concentration gradient - is a scalar constant, the conservation or 
evolution law for the concentration field 4 due to diffusion can be written as 

Here V2 is the Laplacian. The diffusion equation, Eq. (l), is well known in 
mathematical physics, and a large body of analytical and numerical methods exists 
for its solution. Details are available in the monographs by Kellogg [52], Courant 
and Hilbert [23], Crank [24], Carslaw and Jaeger [9] for the former, and Smith 
[83], Richtmyer and Morton [74], Roache 17.51, and Baker [4], for the latter. 
For almost all problems involving only diffusion, these methods are adequate. 

However, when other transport mechanisms besides diffusion are involved in 
determining the concentration field, analytical methods have limited applications, 
and standard computational algorithms may suffer from problems associated with 
the use of grids and the discretization of gradients. To cite a practical example, we 
mention the convection-diffusion case when the diffusivity is small. Under these cir- 
cumstances, the convective displacement of the diffusing quantity greatly exceeds 
the diffusive displacement almost everywhere in the field, but the convection itself 
cannot be properly predicted without an effective representation of diffusion in the 
remaining space, in particular near boundaries. 

In such situations, typified by flows with separating boundary layers [lo, 851, 
numerical techniques that require a fixed Eulerian grid for the approximation of 
spatial derivatives run into difficulties; it is hard to provide sufficient mesh 
refinement where it is needed, while the proper direction of discretization of the 
convective derivative is not known a priori to the solution and may result in 
excessive numerical diffusion [21]. Algorithms that allow computational grids to 
deform, either by following the motion of the flow or by adapting itself to the evolv- 
ing distribution of gradients, were developed to overcome some of these difficulties. 
The former are the classic Lagrangian-grid schemes [79], while the latter are the 
adaptive-grid techniques, well exemplified by the work of Dwyer, Smooke, and 
Kee [29]. 
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Here, we will explore the simulation of diffusion in a third class of methods: par- 
ticle methods. These methods are grid-free, Lagrangian, and do not require the dis- 
cretization of derivatives. 

1.2. Monte Carlo Simulation 

Following the analysis of Courant, Friedrichs, and Lewy [22], numerical adap- 
tation of the statistical simulation of diffusion was developed. In a typical 
application; particles start from the interior of a domain and reach its boundary by 
taking random steps between the corners of a grid with equal probability in all 
directions. The concentration of the diffusing continuum, at the point where an 
ensemble of particles is dispatched, is determined by its average value at the boun- 
dary points where they arrive. 

These simulations, known at large as Monte Carlo methods, provide means of 
estimating Green’s function of the discrete form of the diffusion equation at an 
interior point of an awkwardly bounded region. They require a large number of 
particles for each interior point, and many trials to prepare an ensemble for 
averaging. In general, one deals with each individual point separately and applies 
this simulation to transfer information from the boundary to the interior. 
Applications to the solution of the Laplace equation and the beat equation are 
elaborately developed by Shreider [SZ]. The books of Hammersley and 
Handscomb [46] and Rubinstein [77] provide excellent references on the 
mathematical analysis of the method as well as some practical apphcations. 
Niederreiter [68] cites a comprehensive list of references on the analysis and recent 
refinements of the Monte Carlo simulation. 

A review of some results of Monte Carlo solutions of heat conduction is given in 
Haji-Sheikh and Sparrow [42], who modified the fixed random walk algorithm by 
employing floating random walk to reduce the number of steps needed for eat 
particle to reach the boundary. Emery and Carson [32] adapted the Exodus 
method, in which some directional bias is built into the random walk to minimize 
the number of particles required in each trial. The inscribed figure method was used 
by Zinsmeister and Pau [91] to find the solution along boundaries of simple su 
regions, inside which a numerical solution is easily obtainable by d~~e~e~~e 
methods. The similarity between the neutron diffusion equation and the 
equation prompted an extensive application of codes developed for the former to 
the latter [35]. Although simple to use, the method proved to be uncompetitive 
with other numerical solutions. 

In some physical sense, statistical simulation of diffusion steps back from the con- 
cept of a material continuum, and employs a sort of kinetic theory of giant and 
imaginary particles which wander randomly through the region of interest, carrying 
macroscopic elements of the diffusing field. The motion of the particles is governed 
by statistical laws, derived from the solutions of the diffusion equation, and the out- 
come of a calculation is a list of particle positions and the elements of the concen- 
tration field they are employed to transport. This was graphically illustrated for 
steady and transient diffusion along a rod [92]. 
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If the concentration of the diffusing continuum is divided among the elements, 
the method approaches a Monte Carlo simulation in which particles are generated 
on the boundaries and transported into the interior. On the other hand, Chorin 
[14] suggested that elements of the concentration gradient should be transported 
by these particles so that each element can induce a field throughout the region of 
interest and a more accurate simulation is achieved. 

1.3. Gradient Random Walk 

In his development of a method that employs discrete elements of vorticity to 
simulate the solution of the incompressible Navier-Stokes equations, Chorin [14] 
used random walk to account for the displacement of vorticity due to diffusion in a 
fractional-step scheme. For that purpose, an unrestricted random walk of particles, 
whose displacements were not confined on a grid, was utilized. In solving fluid flow 
equations, the function of interest is the velocity distribution in space and time. 
Thus, particles are used to transport elements of vorticity - a derivative of the 
velocity - and an integration process is performed to evaluate the latter. 

The process of integration diminishes most of the statistical error introduced in 
the random displacements. Boundary curves are segmented to organize the 
approximate satisfaction of boundary conditions by generating extra particles, and 
grids are employed only for the convenient representation of results. In neither case 
is a mesh used to define derivatives needed to advance the calculation. In most sub- 
sequent studies, e.g., Chorin [lS], Milinazzo and Saffman [64], Ashurst [3], and 
Ghoniem, Chorin, and Oppenheim [36], vorticity has been the only diffusing 
quantity. Laitone [53] used the same algorithm to simulate diffusion of vorticity 
and sand particles in a 2-phase flow model. Extension to problems in heat conduc- 
tion and flame propagation was suggested by Chorin [16], analyzed by Hald [44] 
and applied by Ghoniem and Oppenheim [38]. 

A synonym for the class of methods we describe in this article can be “gradient 
random walk,” in contrary to fixed, floating, or Exodus random walks that have 
been suggested in the literature. Here, particles transport elements of gradients 
while their timely displacement is constructed to approximate, in a statistical sense, 
the exact distribution of that gradient. The solution in terms of the distribution of 
concentration is obtained by repeated integration over the particles position and 
their elements; a process that replaces ensemble averaging in conventional statistical 
simulations. 

1.4. Looking Ahead 

In the present work, we develop the rationale for the application of the concept 
of gradient random walk in detail, and exploit the algorithm in a number of related 
transport systems confining the analysis to l-dimensional geometry. The review 
starts with a presentation of relevant fundamentals and definitions in Section II. 
The basic result that leads to the stochastic simulation of diffusion is first developed 
by analysis of the statistical behavior of a hypothetical infinite population of par- 
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titles which perform random-walk, and then by numerical examples which confront 
us with phenomena due to finite sample size. 

In Section III, the procedure is adapted for the solution of mixed initial and 
boundary-value problems involving a single space coordinate. ,4 method of images 
is introduced to help in the identification of appropriate procedure to implement 
different kinds of boundary conditions. The Dirichlet, Neumann, and radiation 
boundaries are investigated and each case is illustrated by a sample calculation 

In Section IV, some applications of the algorithm are presented, starting with a 
generalized procedure to implement time-dependent boundary conditions, which 
also paves the way for the development of schemes with higher resolution. 
Problems where the elements transported by the particles change with time, model- 
ing the combined action of reaction and diffusion, are discussed. A classic problem 
in natural convection is worked out to demonstrate the simulation of the 
simultaneous diffusion of temperature and vorticity. Finally, convection-diffusion 
systems in which diffusion proceeds nearly in a single predetermined direction are 
reviewed. In Section V, we evaluate the accomplishments and future prospects of 
the method, and note a few of difficulties that have not yet been overcome. 

The use of “simulation” instead of “solution” to describe the algorithm, in t 
context of this paper, refers to the generation of random processes characterized by 
prescribed statistical attributes of diffusion, in contrast to direct solution of the dif- 
ferential equation [33]. Solutions, in terms of measurable quantities such as 
average concentration or its correlations, are obtained through statistical data 
deduction, using the outcome of these simulations. More sophisticated diagnostics 
can be utilized to search for mechanisms and correlations in these data as 
well [25]. 

Moreover, while we base most of our arguments on what we feel is sound 
physical intuition, ample pertinent mathematical analysis is available in the 
literature, such as the books of Ito and McKean [50], and Lamperti [55], the 
articles of Doob [26, 271, Chorin et aZ. [ 191, and the analysis of Hald [45], as well 
as others that will be referred to throughout the text. We also note that most par- 
ticle methods were originally developed through their appeal to physical 
imagination and rigorous proofs were obtained later [65,70]. Not only does the 
resemblance between the algorithm and the underlying physical processes motivate 
its development through intuitive reasoning, but it also renders it a prime candidate 
for describing these processes to new comers in the field [SO, 901. 

II. DIFFUSION AND RANDOM WALK 

In this section we establish the relationship between the probability density 
function of Gaussian random variables and the Green function of the diffusion 
equation, While this relationship has been well known, it is reviewed here to 
emphasize the stochastic interpretation of the solution. 
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In a typical problem involving diffusion, the concentration of the diffusing quan- 
tity is initially defined on some boundary surface, thus generating a large flux that 
will disperse this concentration into the interior of the domain. Under these con- 
ditions, the integration of Eq. (1) yields an error function distribiution for the con- 
centration of the diffusion quantity and a Gaussian distribution for its flux [Sl 1. 
For any initial distribution for the concentration throughout the l-dimensional 
space, the solution is composed of a linear combination of properly weighed error 
functions, while the flux is a superposition of Gaussian distributions whose peaks 
are adjusted to the given initial distribution. 

If the process of diffusing the initial concentration is regarded as dispersion of 
particles, each one carrying a finite amount of the diffusing quantity, then it can be 
shown that the displacement of the particles with time has a Gaussian distribution 
with a growing standard deviation [20]. When elements of the concentration field 
are transported by the particles, a Monte Carlo simulation in which particles are 
sent out from the boundaries into the interior is obtained [Xl. In this case, each 
element can only affect the total value of concentration locally. Unless the field is 
finely subdivided and consigned to a large number of particles, a fairly high level of 
statistical fluctuation is expected to appear in the total concentration at each point, 
and ensemble averaging over repeated experiments becomes necessary. 

On the other hand: a spatial derivative of the diffusing continuum may be trans- 
ported by the moving particles, in which case the laws of transport should be 
derived from the transport equation of the gradient, as clearly demonstrated by 
Anderson [ 11. Each particle will induce a field of concentration over the whole 
domain, defined by the integral of the derivative it carries. While the representation 
of the derivative is still crude and noisy, the integral that yields the concentration, 
which is performed over the whole space, will introduce a smoothening effect and 
will reduce some of the statistical fluctuation. The distribution associated with each 
individual element allows their induced fields to overlap in space and some of the 
error committed in their displacement to be cancelled; a phenomenon which is 
widely observed in particle methods [41, 671. 

The design of a computational algorithm must start with an appropriate iden- 
tification of the elements of transport, which is ordinarily suggested by the nature of 
the simulation, being either the diffusing continuum or one of its higher derivatives. 
One needs to specify the statistical distribution of random steps, and to decide on 
the number of particles to be used for different purposes. Since particles may cross 
boundaries while they move in the interior, proper application of boundary con- 
ditions is also necessary. In the following section, we will investigate each step in 
detail. 

II. 1. One-Dimensional Random Walk 

Suppose that a large number of particles are dispatched simultaneously from the 
origin of a Cartesian coordinate system, with each particle instructed to take a step 
along the y axis drawn at random from a Gaussian distribution with zero mean and 
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variance ci2. After the first step, the probability of finding a particle in the small 
range ~!y around y is given by 

P,(y, CT) dy = e-y2!2g2 - 
&i 

et each particle then be instructed to take a second step, drawn at rand from 
same distribution. The probability of finding a particle within dy aro y is 

given by the integral 

i.e., by the sum of the probabilities that the particle reaches y in two steps, having 
reached any y = y in one step. The integral is easily evaluated and the result is 

P2( y, CT) dy = 0’2’4u2 

By induction, after k such steps, 

pk( y, cT) = e--y2/2ku2 dy . 

Equation (5) demonstrates the fact that the sum of Gaussian random variables with 
zero mean is another Gaussian variable with zero mean, and variance equal. to the 
sum of the variances of component variables. If 

a’=20 At, (6) 

where At is the time step and t = k At, i.e., 

2k02 = 4Dt, 

then 

p( y, t) = (471 Dt) ~ ‘,‘2e p.v2;4 Df. 68) 

This is recognized as the singular solution - kernel - of the diffusion equation, it 
satisfies 

i 
OS P(y, t)dy= 1 (9) -cc 

and P( y, 0) = 0 for y # 0, so that P(y, 0) = 6(y), where 6 is the Dirac delta function. 
The relationship between Gaussian probability density of a very large number of 
particles executing simple random walk in a infinite space and the diffusion 
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equation was first discussed by Rayleigh [72,73]. It was generalized by von 
Smoluchowski [87] to encompass stationary, Markovian processes within an 
arbitrary geometry with boundary conditions. Einstein [ 3 1 ] derived a formula for 
the spread of the Gaussian distribution in terms of the diffusivity for the Brownian 
motion of suspended particles. 

Next we consider the diffusion of a finite number of particles and the property 
they are used to transport. 

11.2. Discrete Simulation 

To show how the appropriate definition of the transport elements is influenced by 
the initial conditions and how it affects the accuracy of the results, and to explain 
the algorithm in a simple case, we present random-walk simulation of the diffusive 
spreading of an isolated, initial, planar concentration. Specifically, we consider the 
heat conduction resulting from a finite jump in temperature at y = 0 and t = 0, into 
a semi-infinite solid 0 6 y < cc (this is Rayleigh’s first problem in viscous flow, with 
velocity and vorticity replacing temperature and heat flux, respectively.) This initial- 
value problem is described by 

aT d2T 
t=yp (10) 

KY,O)=H(-.Y) (11) 

and the boundary conditions T( co, t) = 0. T is temperature and a is the thermal dif- 
fusivity, while H is the Heavyside function defined as H(x) = 1 if x > 0 and H(x) = 0 
if x<O. From T(y, t), we construct the variable q such that 

T(Y, t,=j- 44. 
Y 

(12) 

Correspondingly, its governing equation and initial conditions are derived from 
Eqs. (10) and (11) as 

a4 8% z=up (13) 

4h 0) = KY). (14) 

Equation (13) is a consequence of the fact that the diffusion equation is invariant 
under both integral and differential transformations. In Eq. (14), we used the fact 
that 6(x) = -6(-x). In a medium with uniform heat conductivity, q is the heat flux 
that transports energy in the direction opposite to the temperature gradient. 

The solution of q with time is an evolving Gaussian profile similar to Eq. (8). 
Accordingly, the distribution of q(y, t) can be simulated by a number of particles N, 
each carrying a delta jump with a weight proportional to a fraction l/N of the 
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initial total sum of q(y, 0). Thus, the discrete representation of q(y, t) is a sum of 
Birac delta functions, located at the positions y = y, and weighed by 6T,: 

N 

dy, t) = - 1 JT’ @Y, -Y) 
f=l 

where (y,} is a set of Gaussian random numbers with zero mean and standar 
deviation fi. The corresponding approximation of T(y, t) is obtained from 
Eq. (12) as 

T(Y, t) = f ST,ffCv, -Y). (16) 
J-1 

Now, consider the displacement of these particles with time. Initially, they are all 
at y = 0. Using the fact that the sum of k Gaussian random variables of zero mean 
and a variance (2~ dt) is a Gaussian random variable with zero mean and a 
variance (2crt), the solution of Eqs. (10, 11) can be constructed as a time-evolving 
simulation. At every time step, each particle is moved by a random displacement {, 
drawn from a Gaussian distribution with zero mean and variance (2~ dt) in accor- 
dance with Eq. (6). The location of the jth particle is updated according to 

YJ0-t At) =y,(t) + iJ. 1171 

Thus, each particle follows a Brownian trajectory [27]. The advantage of using a 
time-dependent displacement of the particles becomes more evident when the 
algorithm is used in a fractional step scheme to solve equations that combine the 
effect of diffusion with other transport mechanisms. 

To summarize the algorithm, the quantity that is initially concentrated in the 
plane y = 0 is the unit jump in T and the element assigned to each of the N particles 
is an equal fraction of this jump, 6T= ljlv. At each time step, a set (1;,} is prepared 
and the particles are moved according to Eq. (17). Hence, T is approximated as a 
staircase, and when a particle passes a chosen value of y, moving towards y = -t-x, 
it causes an increase in T by an amount 6T. If y coincides exactly with the position 
of one of the particles, yC =4;, then the element 6T, is divided between the two 
sides, 

T(Y,, t)=hT,P+ f ~T,WY,-Y) 
J=l 

which amounts to arbitrarily setting H(0) = 0.5. Moreover, to recover a finite 
representation for the q profiles, the domain is divided into cells, each of dimension 
6y, and the following approximation is utilized: 
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A comparison between Eq. (15) and Eq. (16) illustrates the advantage gained by 
the use of gradients in the random walk process. The solution in terms of q, as 
expressed by Eq. (15), is a sum of delta functions and its finite representation is 
dependent on the choice of 6~. It is a fundamental result of the Monte Carlo 
analysis that with a large number of particles, the approximation is reasonable 
[82]. However, the solution in terms of T, represented by Eq. (16), is independent 
of 6~; the fact that all particles contribute to the local value of T provides means of 
reducing the statistical scatter. Since the only distinction between the problem in 
terms of q and T is the specification of the initial conditions, we will call the first the 
d-problem and the second the H-problem. Note that T is the concentration of the 
diffusing quantity, and q is its gradient or flux. 

11.3. Variance Reduction 

The discretization parameters of the computation are N, the number of com- 
putational elements, and At, the time step. Due to the symmetry of the Gaussian 
distribution, one half of the particles placed on y = 0 at t = 0 are likely to leave the 
domain y > 0 at the first step. Thus, 2N particles, each carrying a jump 6T= l/N 
are used at t = 0, while a = 0.0001. Figure 1 displays sample profiles of T after 100 
time steps, for N = 20 and N = 200, with d t = 0.1. These are compared to the exact 
solution 

T(y, r) = erfc(q), 

where erfc is the complementary error function and ye =y/2&, while the com- 
putational results are plotted against a coordinate normalized with respect to &; 
which provides the only length scale of the problem. Figure 1 demonstrates the con- 

0 0.2 0.4 0.6 0.8 1.0 
T 

FIG. 1. Temperature profiles, computed after 100 time steps with At = 0.1, for the diffusion of a sud- 
den jump in temperature at y = 0 into a semi-infinite solid, compared to the exact error function profile. 
OL = 0.0001. 
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FIG. 2. The varlatlon of temperature with time at 1’ = 0 for the solution m Fig. 1. Results mdlcate 
that an uneven number of particles move to the positive and negative directions of y. 

vergence of the algorithm; the error is reduced by increasing the number of 
elements used in the simulation and the numerical solution approaches the exact 
solution with a small number of elements. The solution evolves in time with a self- 
similar pattern, meanwhile, the particles move out to follow a Gaussian dis- 
tribution, i.e., the gradient of the concentration. The oscillation of the numerical 
results around the exact solution shows the adaptive nature of the algorithm. 
Figure 2 displays a time series T(0, t) for these runs. The raggedness of the spatial 
profiles, i.e., fluctuation of the theoretically constant value of T(O: t), is dampened 
as N is increased. 

The fluctuations at the boundary can be suppressed by the following procedure. 
which employs the reflective properties of the Green function [66]: 

(1) at time t = 0, only N particles are used, and the sign of any negative dis- 
placement is reversed in the initial jump; 

FIG. 3. Temperature profiles in a semi-infinite solid when the boundary condition at r = Q 1s de?er- 
mimstically imposed. 
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FIG. 4. Heat flux distribution for the solution of the same problem, q”, 1s evaluated at y = 0. Results 
are obtained by averagmg inside cells of dimension 6y = 0.02. 

(2) whenever a particle wanders back across the boundary to y,<O, it is 
reflected back without changing its element to the positive location corresponding 
to -yl. 

Chorin [ 151 showed that since the diffusion equation is symmetric around y = 0, 
processes in the positive and negative half spaces are statistically identical and one 
can replace any event in which an element steps from a position in the positive half 
space by its mirror image. Figure 3 shows sample r( y, t) profiles employing this 
procedure after 100 time steps, and with N= 10 and 100 while At = 0.1. These look 
about the same as before, except that they now pass through y = 0 and T= 1.0 
exactly. Thus, a reduction in the number of elements and an improvement in the 
quality of the solution is achieved. 

The 4 profiles, evaluated from Eq. (18) with 6y = 0.02, are plotted in Fig. 4. The 
results show strong fluctuations around the exact solution. The difference in the 
smoothness of the results of an algorithm that employs elements of the gradient 6T 
to simulate the function T, or its gradient q, is evident from these results. 

III. EFFECT OF BOUNDARIES 

In a well-posed boundary-value problem for the diffusion equation, either the 
concentration of the diffusing held, its flux, or a linear combination of the two is 
specified along the boundary of the region of interest. In our l-dimensional 
problems, the boundaries are the planes y = 0 and y = 1. We will show that, in the 
random-walk simulation of diffusion, boundary conditions are satisfied by applying 
the appropriate rule of reflection to the particle and/or its element that is acciden- 
tally carried out of the region of interest, or by the introduction of new elements at 
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the boundaries. The former satisfies the function or derivative boundary condition, 
while the latter is employed to implement the radiation boundary condition of the 
heat equation. 

III.l. Dirichlet Conditions on Both Boundaries 

Consider the case of heat conduction in a slab 0 6 y 6 1. Initial conditions arc: 
T(y, 0) = 0 in 0 < y < 1, while the boundary conditions are: T(0, t) = 0 and 
T( 1, t) = 1 for t > 0. Thus, heat flow is initiated by a sudden elevation of tem- 
perature at the boundary y = 1. Near this boundary, the simulation can be con- 
structed by a small modification of the procedure for the initial-value problem dis- 
cussed in Section II. 

We introduce N particles, give each a temperature element 6T= l/N, and start 
the simulation by letting each take a random step away from y = 1. Following the 
procedure described in the previous section; the solution is approximated by a 
slightly modified form of Eqs. (15, 16): 

4(x t)= - 2 qxPY/) 
/=l 

T(y, t)= 2 U,ff(Y--I;). (86a) 
J=l 

Until the first element reaches y =O, the boundary condition at that wall has no 
effect. The solution for T( y, t) is the same as for T(y, t) in the problem of Sec- 
tion 11.2. 

For later times, our boundary-value problem can be thought of as a segment of 
the initial-value problem in the infinite domain in which 

T= 1 sty= +l, i3, +5,..., 

and 

T=Oaty=O, k2, f4 ,.... 

In the discrete simulation of this initial-value problem, we would start 2N particles 
simultaneously at 

y= &l, &3, +5 )...) 

with equal elements 6T= l/N. It is clear that, on the average, a particle that passes 
the lines 

y=o, f2, +4 )...) 

at any time, will meet a particle with an identical element moving in the opposite 
direction, thus keeping the number of elements in each strip equal N. 
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Therefore, in the simulation of the solution in the slab 0 d y d 1, we need only 
dispatch N particles from y = 1, insisting that they remain within the slab at all 
times. Any particle that steps out of the domain of interest is reflected back across 
the nearest wall, without change of element. We call this type of reflection sym- 
metric reflection. A similar result was derived analytically by Chandrasekhar [ 111 
for what he called an absorbing barrier. 

The transient behavior of the random walk solution is illustrated in Fig. 5, show- 
ing the temperature profiles for the heating of a slab that has T(y, 0) = 0, 
T(0, t) = 0, and T( 1, t) = 1, with a = 1.0. One hundred particles are used to carry 
the initial jump in temperature into the slab with elements 6T= 0.01, and 
At = 0.001, while the symmetric rules of reflection are applied at y = 0 and at y = 1. 
The grid-free nature of the computations allows the gradual spread-out of the 
elements as “the diffusion wave” approaches the lower side, thus preserving a 
uniform resolution with time. The analytic solution is obtained by separation of 
variable and shown in thin lines for comparison. 

The energy transferred to the slab through the boundary can be evaluated by the 
integration of the temperature distribution, 

e(y, t) = 1’ Tdy 
0 

=y f GT,H(y-y,)- f Y,=,H(Y-YJ 
/=I J=1 

FIG. 5. Temperature profiles inside a finite slab with T(0, t)=O and T(1, t) = 1. The diffusivlty 
c( = 1.0, while At=O.OOl. Thin lines show the exact solution while thick lines indicate the numerical 
solution for the temperature. Broken lines represent the energy profiles evaluated by integrating the tem- 
perature distribution. 
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The second line was obtained using integration by parts and substituting for the 
temperature by the Heavyside function approximation, Eq. (16a). Rearranging 

Energy profiles are depicted by the broken lines in Fig. 5. The improvement of 
the smoothness of the solution by integrating over the elements is clearly observed 
in the figure. This property will be exploited later to construct schemes with better 
smoothness. 

III.2. Mixed Dirichlet and Neumann Boundaries 

A more involved situation arises if different conditions are imposed at y = 0, and 
at y = 1 for the same slab 0 < y < 1. Suppose the initial condition is T(y, 0) = 0, 
while the boundaries are T( 1, t) = 1 and q(0, t) = 0. This boundary-value problem is 
equivalent to an initial-value problem that extends over - IX) < y < x with a 
periodic boundary of 

T= 1 atJJ= 1, -3, 5, -7, 9 ,.... 

and 

T= -1 sty= -1, 3, -5, 7 ,.... 

while 

q= Oaty=O, +2, +4, +6,..., 

indicating a perfect anti-symmetry across the adiabatic walls, q = 0. To solve this 
initial-value problem, one starts with N particles at y = 1, - 3, 5,..., with elements 
6T= +1/N, and N particle at y= -1, 3, -5,..., with 6T= -l/N. and keep the 
positions of these particles in perfect symmetry across y = 0, -t 2, k 4,... . Thus, when 
a particle from the positive side of y crosses y = 0 to its negative side, it is replaced 
by a particle at yJ = -y,, while changing the sign of its element 6T,. We call this 
type of reflection anti-symmetric reflection. Similar rules were derived analytically 
by Chandrasekhar [ 111 for a reflecting barrier. 

The above analysis indicates that one can solve the original problem of heat con- 
duction in a slab 0 < y < 1 with an adiabatic wall at y =O, by employing only N 
particles with elements 6T= l/N starting at y = 1 and propagating into the slab 
with symmetric reflection across the y = 1 boundary and anti-symmetric reflection 
at the y = 0 boundary. Sample calculation for this problem is shown in Fig. 5, 
simulating the evolution of the temperature profile in a slab with an adiabatic wall. 
One hundred particles are used to carry the T= I jump at y = 1 and t = 0, with 
6T = 0.01 and the time step At = 0.001 was used. Anti-symmetric reflections at the 
y =0 boundary change the sign of the element. A similar algorithm was used in 
[37] to solve for the development of a Poiseuille flow in a channel, where the cen- 
ter line acts as a reflecting barrier. 

SRl/61,1-2 
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0 0.2 0.4 0.6 - 0.8 1.0 

FIG. 6. Temperature distributions inside a finite slab with T( 1, t) = 1 and q(0, t) = 0, I.e., an insulated 
wall. 100 elements are used in the calculations, with A? = 0.001 and c( = 1.0. 

111.3. Heat Flux Boundary Condition 

Consider heat conduction in a semi-infinite solid 0 6 y < GO, with a constant heat 
flux q(0, t) = 1 at the boundary. The problem can be formulated in terms of q as 

aq a*4 t=“ay” (13) 

and 

dy, 0) = H( -Y) (20) 

while T( y, 0) = 0 for y > 0. This is the same as the H-problem in terms of 7’, which 
was described in Section II. Hence, N particles, placed on y = 0 at t = 0, are used to 
transport elements of q, with 6q = l/N. Later, the value of q at any point is given by 

dy, t) = f h,H(y, -v) 
J=l 

(21) 

and the location of each element is determined using Eq. (17). Temperature dis- 
tribution is obtained by integrating the above expression according to Eq. (12). The 
integration proceeds as in Eq. (191, and the result is 

T(Ys t)= 2 (Y,-Y)&&WY,-Y). 
J=l 

(22) 

Therefore, the temperature profile obtained will resemble in its smoothness the 
energy profiles in Section 111.1. Equation (21) indicates that the gradient of q was 
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used in the random walk process to transport the second derivative of T, which 
explains the reason why there is a gain in smoothness. The use of higher order 
derivatives to construct smooth solutions will be discussed more elaborately in Sec- 
tion IV. 1. 

111.4. The Radiation Condition 

consider the solution of the heat equation in a semi-infinite solid 0 < y < a, sub- 
ject to the following boundary condition: 

q(0, t) + Cl T(0, t) = C,. WI 

The initial condition is T(y, 0) = 0, and heat flow is initiated by suddenly imposing 
a constant non-zero value of q(0, 0) = C,. Eq. (23) is known as the radiation con- 
dition of the heat equation [9]; it approximates the situation in which a fluid is 
used to heat, or cool, the boundary of a solid. Thus, it is more relevant practically 
than the temperature or the heat flux boundary condition. Moreover, coupled with 
Eq. (13), it forms a system which resembles the equations that describe viscous flow 
over a solid wall, where the boundary condition is assigned in terms of the velocity 
(analogous to T) while the field is solved in terms of the vorticity (instead of q). 
Thus, the methodology developed here will be instructive in devising a solution for 
the convection-diffusion problem in Section IV.4. In both cases, the application of 
the boundary condition will require the continuous generation of extra elements on 
the wall. 

This problem is essentially more complicated since both ~(0, t) and T(0, t) are 
expected to vary with time. Our procedure has the flavor of a predictor-corrector 
algorithm. At time t = 0, the problem is the same as the problem of heat flux boun- 
dary condition described in the previous section. Thus, we first attribute the sudden 
increase in q(0, 0) to N particles and assign an element 6q = C,/N to each. At any 
point, the heat flux q(y, t) and the temperature T(y, t) are given by Eq. (21) and 
Eq. (22), respectively. The particles are transported by their first random dis- 
placement in the usual way, ensuring that all N stay within the domain of interest 
~30. Next, we evaluate q(0, t) and T(0, t) at the boundary as, 

J=l 

and find the value q’(0, t) from Eq. (23) using the value of T(0, t) given by Eq. (24). 
The difference q’(0, t) - q(0, t) is treated as a new jump in q, to be subdivided into 
elements of 6q and sent out with new particles. Thus, the total number of particles 
grows with time to ensure the satisfaction of the boundary condition, while 6q 
associated with each particle is kept within limits, to be decided according to the 
desired accuracy. During each time step, new particles are dispatched from the wall 
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FIG. 7. Temperature at the wall of a semi-infinite solid with diffusivity GI = 1.0, exposed to the 
radiation boundary conditions. The continuous curve represents the exact solution and the circles depict 
the numerical solution for At = 0.002 and two different values of 6q. 

while old particles perform their new step. If a particle steps out of the domain of 
interest, it is reflected back in with unchanged element across y = 0. 

Figure 7 shows a comparison between the computed T(0, t) and the exact wall 
temperature. In this calculation, C, = C, = 1, T(y, 0) = 0, and a = 1.0, while 
6q= 0.002 and 0.01 with At = 0.002. While the boundary condition in terms of 
Eq. (23) is exactly imposed by this algorithm, the values of T(0, t) and q(0, t) are 
evaluated as a part of the solution, thus they are seeded with statistical fluctuations. 

IV. APPLICATIONS 

Now that we have reviewed the solution of the fundamental problem of diffusion, 
as well as the implementation of different types of boundary conditions, we apply 
the random walk algorithm to problems in which the concentration tield evolves 
with time due to changes at the boundary. That, in turn, will lead to the construc- 
tion of higher order methods which will improve the smoothness of the solution. 
Moreover, we will consider a number of systems in which more than one 
mechanism of transport is effective in determining the concentration field. While 
doing this, we will show how the principle of fractional steps [SS] can be 
implemented to build efficient algorithms incorporating random walk. 

IV.l. Higher-Order Approximations 

Using random walk analogy of Duhamel integral theorem, any one of the 
problems discussed above can be generalized for time-dependent boundary con- 
ditions. The temporal variation of the boundary value, e.g., T(0, t), is approximated 
by a staircase function in time. The jump in T(0, t), that occurs at the beginning of 
each time step, is partitioned among an appropriate number of elements and trans- 
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ported by an equal number of particles, to be added to the existing particles in the 
next time step. 

There is, however, an interesting alternative approach, presented here for the first 
time, in which T(0, t) is approximated by a sequence of connected straight line 
segments instead of a staircase. The elementary problem is one in which T(0, P) is 
given as a linear function of time. Suppose that for the semi-infinite solid 0 d y < x, 

T(Y, O)=O 

T(0, t) = t. 

Thus, 

g(o, t)= 1 

and from the governing equation, Eq. (lo), 

The initial condition on the second derivative, Eq. (27), suggests that if we 
employ h, 

&2 
aY2 f28) 

as a dependent variable, then the problem in terms of h becomes the same as the N- 
problem in T, presented in Section II, i.e., 

ah d2h 
t=yp c991 

and 

h(O, t) = (l/a) ff( -Y). (30) 

If 6h elements, which resemble heat sources [9], are transported by the particles, 
they will be displaced in the same sequence as 6T elements in Eq. (17). If 
ah, = l/(ctN), then 

Integrating Eq. (2X), and employing Eq. (31): 

4(Y2 t)= f (YJ-Y) GhjH(Yj-Y)t 
J=l 

(321 
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where q = -aT/ay and the integration is performed in a similar way to Eq. (19). 
Integrating Eq. (32), we find that 

T(Y, t)=i 2 (Y,-Y)~~~~H(YJ-Y). (33) 
j=l 

In particular, at the boundary y = 0, 

and 

T(0, t) = 1 2 yi” dh,. 
J=l 

(35) 

As pointed out in Sections II.2 and 111.1, successive integrations over the particle 
positions result in smoother representation of the profiles, thus we consider this 
scheme to be preferable than a scheme that uses 6T elements in providing smoother 
profiles. Numerical results for a case in which T(0, t) increases linearly from t = 0 to 
t = 1, after which it remains constant, are shown in Fig. 8 and 9, for the case CI = 1.0. 
N particles with elements 6h = l/(crN) are introduced at the wall at t = 0; to be 
followed by another N particles carrying 6h = -l/(aN), introduced at the wall at 
t = 1, At = 0.005. The rules of reflection that have been derived earlier are employed 
to preserve the elements in the half space y 3 0. 

In Fig. 8, T(0, t) is plotted for two values of N= 100 and 1000. Clearly, the 
scheme does not effectively impose, on a single realization, the ensemble-mean 
behavior of the wall temperature. In Fig. 9, temperature profiles, computed for 

FIG. 8. Statistically-imposed, versus exact time-varying temperature at the boundary. The former is 
computed using elements of heat sources, 6h, and for both cases At = 0.005, and 01= 1.0. 
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0.6 

T/Tw 

FIG. 9. Temperature profiles in a semi-infinite solid. The temperature at the boundary is described in 
Fig. 9, and the algorithm employs heat source elements, ah, N = 100, At = 0.005. 

N= 100, are plotted for different times. The first 2-coinciding curves correspond to 
a self-similar solution at t 4 0.5 and 1.0, for which the temperature at the wall varies 
linearly [9], The second two profiles, for 1‘= 2.5 and 5.0, show the transient 
solution from a state for which the wall temperature increases linearly, to a state 
where the wall temperature is constant. The smoothness of the profiles is self- 
evident and exhibits the improvement gained by transporting the second-order 
derivative. However, these two observations amount to a trade-off between a 
smooth field and an approximate satisfaction of boundary conditions. 

We note that while normalized profiles almost coincide with exact solutions, local 
values exhibit continuous oscillations around their mean values. That indicates a 
uniform resolution of the numerical results over the entire profile, i.e., deviations at 
each point have the same magnitude near the boundary and far from it. Figure 8 
shows that the time average of the error is stationary, thus, statistical oscillations 
do not grow and the solution is stable. Moreover, the solution obtained for Tw = 
T(0, t) shows that the properties of the algorithm are independent of the functional 
form of the boundary condition and that the algorithm. will behave identically for 
an arbitrary case. While it is possible in principle to generalize this procedure to 
higher derivatives, caution should be exercised since: 

(I) the gain in smoothening of the interior profiles, which is crucial if 
derivatives are to be employed in the solution, is counter-balanced by some loss ‘of 
accuracy in the satisfaction of the boundary conditions; 

(2) in more involved problems, a differential equation for the high order 
derivative, which plays the role of a transport equation for that gradient, may be 
difficult to derive and more approximations may be invoked at that level; [I]; 

(3) more computational time is used in higher order approximations to 
evaluate the successive integrals of Eqs. (34, 35). 
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IV.2. Combined Reaction and Diffusion 

This is an example of a case in which employing random walk to simulate dif- 
fusion lays the ground for constructing a grid-free, self-adaptive algorithm in 
problems with a moving boundary-layer-like solution. Alternative methods require 
the use of adaptive gridding in the finite-difference formulation [28], or moving 
elements in the finite-element analysis [71], to overcome wasting a good part of the 
grid points where the function is essentially constant. The reaction-diffusion 
equation appears in problems governed by the simultaneous action of gradient dif- 
fusion and local multiplication of concentration, which may be heat, chemical 
species, population density, or strength of nerve signal. It finds applications most 
notably in the theory of laminar combustion [89], and in biological systems [34]. 

A simple model for a reaction-diffusion system can be expressed as 

$= a $+f(T): (36) 

where T, a, t are defined as before and x is the direction of propagation of the reac- 
tion front; f(T) is the rate of production of energy per unit mass and it is deter- 
mined according to the kinetics of the reaction mechanism. If f(T) = T( 1 - T), 
Eq. (36) becomes the Fisher equation, and an analytical solution for testing the 
developed algorithm can be found. With the following boundary conditions, 

T(c0, t)=O, 

T(-co, t)= 1, 
(37) 

the equation has a moving wave solution, propagating from left to right at a con- 
stant speed, while the thickness of the wave is O(&) [60]. If the initial conditions 
are given by 

T(x, 0) = l/( 1 + @A)’ (38) 

then S= 5/$, is the speed of the wave and the solution is self-preserving with 
respect to (x - St). 

The random walk solution of Eq. (36) starts by representing the initial condition 
in T by a series of stepwise changes in the profile 

N 

T= 1 GT,H(xj- x), 
/=l 

where 6T, is located at x,. At t = 0, x,(O) is given by the solution of Eq. (38), 

x,(O) = & ln( T,- ‘/’ - 1). (40) 

The diffusion of temperature is simulated by the displacement of particles that 
transport the elements ST,, given by Eq. (17). To satisfy the second part of Eq. (36), 
the element of each particle is allowed to change with time according to 

6Tj(t+dt)=(1+f’(TJ)dt)6T,(t), (41) 
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where f’ = df/dT. Eq. (41) is obtained by integrating the reaction part of Eq. (36) 
for the particles (j + 1) and j and using the definition of the element as 

ST,= T,,,- Tj. (421 

As particles move, the element they transport can exceed an upper limit ST,,,, and 
extra particles should be used to disperse this jump, thus a branching random walk 
algorithm is used [63]. More analysis on branching Brownian motion is given in 
the manuscript of Bramson [7]. 

The algorithm was first discussed by Chorin [ 161 for flame propagation 
problems. Hald [44] analyzed a slightly different construction and showed that the 
error in the solution is O(a), i.e., steeper waves are calculated with higher accuracy. 
This property ensures that as the diffusivity becomes s,maller. the algorithm can 
accurately resolve the wave structure that is becoming thinner. Figure 10, 
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FIG. 10. Temperature profile: for flame propagation, modeled by the Fisher equation, with Eq. (38) 
describing the initial conditions: (a) the reaction term is integrated using a first-order Euler scheme, 

t S 

1 2 1.97 
2 4 1.94 
3 6 1.87 : 
4 8 1.77 
5 10 1.72 

(b) the reaction term is integrated analytically: 

t s 

1 2 2.01 
2 4 1.97 
3 6 2.09 
4 8 2.20 
5 10 2.01 

The exact value of S is 2.04 [38]. 
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reproduced from Ghoniem and Oppenheim [38], shows the self-adaptiveness of the 
algorithm as a constant number of particles move to follow the propagating wave. 

In the case of more than one diffusion variable, such as the diffusion of heat and 
species in a more involved model of flame propagation, a different set of particles is 
used to transport the elements of each concentration field. Thus, different scales of 
diffusion, O(h) for the kth variable, are naturally presented in the solution. This 
property of the algorithm circumvents the dissipation of sharp gradients, or the 
need to adjust the grid to the smallest diffusion scale in problems with multiple 
scales. The application of the algorithm to a system of reaction-diffusion equations, 
in which f becomes a vector function in the array of the diffusion variables, is 
presented in [38]. Figure 11 depicts results from the same reference for the case of 
laminar flame propagation governed by two active species and Arrhenius rate 
kinetic model. 

IV.3. Simultaneous Diffusion of Heat and Vorticity 

A simple problem in natural convection, described in Illingworth L-491, allows an 
impressive demonstration of the intuitive appeal of the random-walk simulation 
scheme. Consider the situation next to an infinite vertical wall x= 0, with initial 
conditions 

T(x, 0) = 0, 

u(x, 0) = 0, 06x<co, 
(43) 

where u is the vertical velocity parallel to the wall. The boundary conditions are 

T(0, t) = 1, T(c0, t)=O, 

u(0, t) = 0, u(c0, t)=O. 
(44) 

FIG. 11. Temperature and intermediate species concentration C, profiles for a 2-reaction flame 
model. Results are shown after 1000 time steps. The exact value of S is 29.07 1381. 
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We adopt the simplest possible mathematical model, embodied by the Boussinesq 
equations in the form [56] 

ar a2T 
z=“ax’ 

2 

;=v$+gflT, 

where g is the acceleration of gravity, /I is the coefficient of thermal expansion, v is 
the kinematic viscosity and the x direction is normal to the vertical wall. 

The T-problem, Eqs. (43, 44, 45), has the same solution as the H-problem in Sec- 
tion 11.2, using elements 6T= l/N. Consider now how gravity acts in the vicinity of 
a vertical temperature element. During a time increment At, the fluid on the warmer 
side experiences a greater upward acceleration than that on the colder side, so that 
the temperature element breeds an accompanying vortex element of strength &I, 
evaluated by partial integration of Eq. (46) 

6v=(g/?hT) At. (4-v 

The appearance of these baroclinically generated vortex elements has, however, an 
illegal consequence at y = 0, since it produces a slip velocity 

v,(O, t) = f &I, (48) 
J=l 

that violates Eq. (44). This must be annulled by a concentrated vortex sheet of 
equal and opposite strength, which is subdivided into elements &I = -v,(O, I)/N. 
Thus, at the beginning of the second time step we have N particles transporting 
temperature elements, N particles transporting baroclinically generated vortex 
elements accompanying them, and N particles with equal but opposite vortex 
elements concentrated at the wall. 

The events in the subsequent time steps consist of: 

(1) random movement of all particles, insisting that all the wall-generate 
vortex elements move out into the fluid. The displacements for the particles of 6-T 
are drawn from a Gaussian distribution whose variance is 2~ dt, while those for the 
particles of 60 are drawn from a Gaussian distribution whose variance is 2~ AL 
Thus, the effects of Prandtl number, Pr = v/a, are taken into account; 

(2) each temperature element introduces a fresh baroclinically generated vor- 
tex element, and compensating vortex elements are introduced at the wall to main- 
tain the no-slip condition on it satisfied. 

Sample calculations were executed, using 20 thermal elements and At = 0.1. The 
velocity profiles shown in Fig. 12 are evaluated after 120 time steps, when the field 
contains 4800 vortex elements plotted against a finite-difference solution of the 
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FIG. 12. Velocity parallel to a heated vertical plane, induced by the diffusion of 20 temperature 
elements. The profiles are computed after 120 time steps and compared with a deterministic solution. 

same problem. According to the analytic solution in [49], the maximum value of v 
is given by 

V max =A(Pr)P(T(O)-T(co))gt. 

Figure 13 depicts a comparison between the analytic value of V,,, and the com- 
puted result. As observed in the previous example, a common characteristic of 
gradient random walk solutions is that normalized distributions agree closely with 
exact solution. On the other hand, point values oscillate around their average 
values with a uniform absolute deviation over the entire space. The statistical fluc- 

N = 100 (P,=l 0)’ 

0 02 04 06 0.B 
t 

IO 

FIG. 13. Maximum free convection velocity at different Prandtl numbers. 
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tuations are bounded; i.e., no amplification of perturbations is induced in an 
otherwise stable physical phenomenon. The last observation will have important 
consequences in the application of the algorithm to turbulent flow. 

Two features of the algorithm are worth highlighting: 

(1) It employs the concept of time-splitting, treating simultaneous events as 
though they occurred sequentially during each small time step. While treating dif- 
ferent processes sequentially, one has the option of using quite different numerical 
techniques for each if that would be advantageous. Obviously, each technique must 
supply recognizable input data to the other if the processes are coupled. 

(2) The number of particles may proliferate in even a very simple problem. In 
the free-convection problem, 2N particles are added at each time step, where N is 
the number of particles of 6T. Clearly, the merging of particles will often be needed. 
Suggestions to overcome this difficulty are provided in Eastwood and I-Iockney 
[30], Ghoniem et al. [39], and Leonard and Spalart [SS]. 

IV.4. Diffusion Inside a Thin Boundary Layer 

In all the preceding examples, diffusion was treated as strictly l-dimensional, and 
the diffusing continuum was allowed to change only in the direction normal to the 
boundary. In many problems of interest, while quantities change in two directions, 
the gradients in one direction can far exceed those in the other direction so that dif- 
fusion may be assumed l-dimensional and the preceding analysis applies. This 
notion is a basic ingredient of boundary-layer theory in viscous fluid flow. Here we 
derive a condition for the application of that argument from a stochastic view 
point. then summarize an algorithm to implement random walk in the solution of 
the convection diffusion equation within a thin boundary layer. 

Consider how a quantity diffuses into the half-space .v 3 0, being released at ~1 = 0. 
but now allow the boundary values imposed at y = 0 to vary slowly in the x direc- 
tion, parallel to the wall. Suppose that the amount of the diffusing quantity to be 
dispersed from any particular short wall segment is divided equally among n 
elements, and that y1 varies smoothly with x. These elements will execute 2-dimen- 
sional random displacements with x and y components drawn from a Gaussian dis- 
tribution with variance rJ2 = (2v At). The number of elements arriving after one step, 
ger unit area at (0, v) is 

N(0, y) = dx & !‘“, n(t) e~(~‘+~~“~~ d</27co’. (49 1 

Representing n(t) by a Taylor series, 

n(t) = n(0) + n’(0) < + n”(0) iJ2/2 + . . . . 

we calculate 
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Equation (50) shows that as long as the following inequality is satisfied, 

o2 n”(0) 
--<l 
2 n(O) 

(51) 

then, to a second order, the number of elements arriving at (0, y) depends on the 
number of elements originating at (0, 0), and diffusing only normal to the wall. 

Thus, diffusion normal to the wall, in its immediate vicinity, can be simulated 
using objects that have a finite length in the x direction, and remain parallel to it 
while they move in the y direction carrying a jump in the diffusing quantity. These 
objects were treated as vortex sheets by Chorin [I151 in this development of a vor- 
tex scheme to solve the viscous boundary layer equations. Condition (51) is guaran- 
teed in a boundary layer flow when the coefficient of viscosity is small and the 
change in vorticity along the wall direction is smooth. Under these circumstances, 
the equations governing the flow field are the convection-diffusion system [56] 

do 2 

t+(u.V)w=vfi 

w 

du+av=o 

ax ay 
a2k 

“=6 

(52) 

(53) 

u(x, 0, t) = 0, (55) 

where u = (u, v), are the two components of velocity in the (x, y) directions, and w 
is the vorticity. Equation (55) is satisfied by generating a continuous sheet of vor- 
ticity with variable strength 

l-= u;dl 
s (56) 

along the wall, where u, is the velocity along the wall and r is the circulation [57]. 

Vortex sheet algorithm. In Chorin’s scheme, the continuous sheet is segmented 
into elements of finite length AZ and circulation y = u, per unit length. Each 
segment is replaced by a number of sheets n(x), with circulation yj= y/n(x), to 
improve the resolution in the y direction. Vortex elements, from each segment AZ, 
diffuse normal to the wail according to the previous analysis, and induce a velocity 
field given by the integration of Eq. (54), 

n 
u(x3 Y2 t)= um(x)- C Y,rCx) H(Yj-Y), (57) 

j=l 
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where U,(X) is the free stream velocity at CD = 0, while the summation is performed 
within a segment Al normal to the wall. The motion of vortex sheets, acting as par- 
ticles that transport jumps of velocity in the form of elem.ents of vorticity, is gover- 
ned by Eq. (52). The transport of vorticity can be implemented in two fractional 
steps: convection and diffusion, where the first employs Eq. (57) to evaluate the 
particle velocity, and the second mechanism is implemented using Eq. (17), thus 

rj(t + At) = rj(t) + u, At + ii, (58) 

where {, is in the y direction and u is evaluated by integrating the continuity 
equation, Eq. (53). The convergence of the viscous-splitting algorithm was 
established by Beale and Majda [S], showing that the error involved is O(v). Since 
the motion of vortex sheets may violate the no-slip boundary condition, Eq. (55), 
extra particles are added at the wall for each segment to carry the excess cir- 
culation, evaluated from Eq. (57) as 

Yn(X> t) = U,(x) - f Y,(X). 159) 
J= 1 

Thus, similar algorithms of particle generation at the boundary are used to satisfy 
the radiation condition of the conduction equation, Section III.4, the no-slip con- 
dition in natural convection, Section IV.3 and the no-slip condition in a boundary 
layer. 

Results in [15], reproduced in Fig. 14, show the velocity profile inside a boun- 
dary layer along a flat plate. Refinements of the algorithm, which were implemented 
in the same reference, include: 

(1) accounting for the overlap of vortex sheets in each strip as they move 
parallel to the wall, to improve the resolution of Eq. (57); 

(2) the reduction of statistical fluctuations by the proper choice of random 
displacements inside each segment to guarantee the continuity of vortex sheets in 
the direction parallel to the wall whenever possible. 

Cheer [12] produced a well-documented code to solve for a boundary layer over 
an arbitrary surface, by allowing U,(x) to vary according to a given potential flow 
solution, and presented results for a separated boundary layer over a cylinder. 
McCracken and Peskin [62] used conformal mapping to apply the algorithm in a 
transformed plane to overcome the problem of vorticity generation at singular 
points, such as corners and points of separation. Teng [86] developed a scheme 
that employed elliptic vortices with variable geometry [54], to allow for a smooth 
transition from vortex sheets at the wall to vortex discs far from the boundary layer. 
He showed that a smaller number of elements is required with this construction, 
and indicated that a transition occurs at high values of Reynolds number. 

Chorin [15] used a hybrid vortex sheet-random choice scheme to solve for the 
compressible flow inside a reciprocating engine, in which the sheets were employed 
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FIG. 14. Velocity profile inside a boundary layer. The circles represent the computed solutions, 
averaged over 20 steps, and the continuous hne is the Blasius profile [15]. 

to satisfy the viscous no-slip condition on the walls. Sod [84] extended the analysis 
to an axisymmetric flow and solved, stochastically, the diffusion equation in cylin- 
drical coordinates by allowing each particle to take an extra step in the radial direc- 
tion. Using the analogy between the transport equation of vorticity and heat [37], 
this algorithm can be directly applied to the solution of thermal boundary layers. 

The algorithm has two distinct properties: 

(1) The grid-free nature of the calculations provides the necessary resolution in 
the direction normal to the wall. The thickness of the boundary layers is O(d), or 
in non-dimensional form 0(1/a), h w ere R = U, L/v. For high values of R, it is 
impossible to resolve the structure of the boundary layer in natural coordinates 
using difference methods. The situation is similar to the flame propagation analysis 
presented in Section IV.3; 

(2) The error in the computations is O(J) [14,44]. As a consequence, the 
accuracy of the results improves for small values of relative viscosity, or large 
Reynolds numbers. By conventional measures, the computations are anti-diffusive 
[21]. Thus, the 
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scheme can be constructed by transforming vortex sheets into vortex blobs as they 
leave the boundary layer. The velocity field induced by vortex blobs is given by 

where r = (x, y), and g is used to remove the center smgularity associated with a 
point vortex and improve the accuracy of the simulation. Expressions for the 
function g are described in Chorin [14], Hald [43], Leonard [58], and Beale and 
Majda [6]. The diffusion of vortex blobs is simulated by a 2-dimensional random 
walk with the same mean and variance as before. Thus, vorticity transport by blobs 
is governed by 

while u is given by Eq. (60), and 4 consists of two Gaussian random numbers, both 
with zero mean and a variance (2v At). (Our excursion into 2-dimensional random 
walk algorithms is not meant to be descriptive or comprehensive, it is presented 
here as one more application for the boundary layer scheme.) 

Chorin [ 171, employed the hybrid vortex scheme to study boundary layer transi- 
tion at high Reynolds numbers. The velocity profiles are not expected to match 
experimental measurements on turbulent flow because of the 2-dimensionality, 
however they exhibit a transition instability that results from the onset of the 
Tollmien-Schlichting waves. Figure 15, reproduced frorn this reference, shows the 
velocity profiles for a boundary layer before and after transition. Ashurst [3] 

FIG. 15. Velocity profiles inside a boundary layer before and after transition corresponding to two 
values of the Reynolds number. The computed solution, presented by circles and triangles, is averaged 
over 10 steps for each case. The solid lines correspond to the Blasius profiles and an approximate 
average, respectively [ 177. 

581/61/l-3 
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applied a similar algorithm that employed time-dependent form of g in Eq. (60) to 
account for vortex aging, to turbulent shear layer and obtained a satisfactory com- 
parison with experimental results. Shestakov [Sl ] computed a high Reynolds num- 
ber flow inside a cavity using a finite-difference algorithm in the interior and a vor- 
tex-blob scheme to resolve the boundary layers close to the walls. 

Peskin [69] extended the algorithm to account for vorticity generation at the 
boundary due to the action of elastic forces to simulate the formation of the aortic 
vortex. Since vorticity can leave the boundary only by diffusion, the accuracy of the 
calculations depends strongly on a proper simulation of this process. Ghoniem et al. 
[36] and Hsiao et al. [48] modified Eq. (60), using conformal mapping, to com- 
pute the internal flow over a backward-facing step for a non-reactive and reacting 
mixture, and observed that the large scale eddy structure and the average velocity 
profiles are accurately reproduced by their solutions. 

Roberts [76] tested computationally the accuracy of the random vortex method 
and confirmed that the error is O(m). H e concluded that in a stable flow, vor- 
tex calculations do not promote the growth of statistical fluctuations introduced in 
the random walk. Marchioro and Pulvirenti [61] demonstrated analytically that 
the random vortex construction represents a weak solution of the Navier-Stokes 
equations. 

Cheer [13] obtained a solution around an impulsively started circular cylinder, 
showing various stages of development of the wake and an accurate estimate of the 
normalized velocity profiles along the axis of the wake. The computations 
reproduced the non-symmetrical behavior of the eddies in the wake, as well as an 
accurate estimate of the drag coefficient. Ghoniem and Sethian [40] developed an 
accurate second-order hybrid scheme to study turbulent recirculating flow at a wide 
range of Reynolds numbers. Two-dimensional, axisymmetric extensions of 
Eqs. (60,61) are discussed by Sod [84] with applications to vortex formation in an 
internal combustion engine. Inviscid vortex methods are reviewed at length by 
Leonard [SS] and Aref [2]. 

Finally, we should also mention that 3-dimensional hybrid vortex schemes 
employing random walk were developed by Chorin [17, 181 to study turbulent 
boundary layers and the evolution of 3-dimensional Navier-Stokes solutions, 
respectively. 

V. CONCLUSIONS 

Major conclusions of this study can be summarized as: 

(1) Starting with a collection of particles; each transporting an element of the 
concentration field, or one of its derivatives, one can accurately construct this field 
at later times by displacing the particles, without changing their elements, according 
to a Gaussian distribution with a zero mean and a variance that grows with time as 
(2at). 
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(2) The accuracy of the simulation is determined by the choice of the element 
to be tranported by the particles. Smooth distributions are obtainable if elements of 
concentration gradients are transported by the particles. Although it has been 
shown that the type of the element is imposed by initial conditions, one can 
approximate the initial conditions by an arbitrary change with time during a short 
duration, to achieve higher accuracy. 

(3) Boundary conditions can be implemented by reflecting particles that cross 
the boundary. If the concentration transported by the particles is fixed on the boun- 
dary, particles are reflected back unchanged. If a gradient is fixed, the element of 
the particle changes its sign during reflection. If a combination of the two is defined 
on the boundary, then extra gradient elements should be generated and carried by 
new particles to satisfy the boundary condition. This is the case of the radiation 
condition for heat conduction and the no-slip condition in viscous flow over a solid 
boundary. 

(4) The algorithm can be tailored to fit in a fractional step scheme if other 
transport mechanisms are active in determining the concentration field. In this case, 
particles will multiply in the interior of the domain, their element will grow by local 
production or they will have extra displacement, due to the other mechanism. 

(5) In all simulations, the basic construction yields a grid-free, self-adaptive 
algorithm of a Lagrangian nature, thus providing an efficient scheme to solve flow 
problems in which regions of steep gradients occupy relatively small areas of space 
and move in time while surrounded by a zone of almost no changes. Moreover, dif- 
ferent sets of particles are used to transport concentration fields with diRerent dif- 
fusivity, thus a wide disparity in length scales is naturally accomodated without 
posing any particular difficulty. 

(6) The numerical error is O(E) or O(h), depending on the system, thus the 
algorithm is capable of resolving thin boundary layers that result from small values 
of relative diffusivity. On the other hand, this error is anti-diffusive, rendering the 
method most suitabIe for turbulent flow calculations. 

(7) All algorithms are explicit in time. We note that while Monte Carlo 
simulations provide the solution at a point in the field, gradient random walk 
produces an entire profile in which the solution at each point is dependent on the 
solution everywhere else. 

The successful application of the algorithm to separated boundary layers, 
unstable flow, and turbulence represent an exciting prospect in the development of 
numerical solutions of the wavier-Stokes equations. While the competitiveness of 
this method in solving the diffusion equation against other numerical methods is 
doubtful, we have tried to stress here the unique features it provides when used to 
simulate diffusion in multi-transport systems. Thus, attempts to use large numbers 
of particles to obtain solutions with high accuracy, while possible, were not carried 
out. Instead, fluctuating errors that accompany economical computations were 
emphasized to assess their effect on the overall quality of the solution. 
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The aspects of the solution algorithm which require a large computer budget, 
however, need to be addressed in more detail. If vortex elements are transported, 
the particle-in-cell and cloud-in-cell methods can offer some remedy [30, 701. The 
implementation of variance reduction techniques provides means by which one uses 
less particles to achieve the same accuracy [I%, 771. The trade-off that currently 
exists between attaining higher resolution in the interior and improved accuracy on 
the boundaries requires more investigation to optimize the algorithm. 

Finally, we should mention that particle methods, vortex methods in particular, 
represent the most natural way to remove the non-linearity of flow equations 
without imposing either numerical diffusion or directional bias on the results or 
stability limits on the computations. In that regard, random walk is most com- 
plementary since it introduces the effect of molecular diffusion without impeding 
any of the attributes of inviscid vortex methods. Moreover, the accuracy of the 
overall scheme improves at high Reynolds number. Thus, in the effort of direct 
simulation of turbulence, 2- and 3-dimensional random vortex solutions should 
provide a significant contribution. 
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